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An unsteady lifting-line theory is presented for a general motion of a wing of high 
aspect ratio. Our matched-asymptotic-expansions analysis parallels that of Van 
Dyke (1964) in his solution for the steady lifting line, but is complicated by the 
shedding of transverse vortices associated with variation of circulation with time. 
The principal result is an expression for the downwash due to three-dimensional 
effects. Numerical calculations are presented for a wing of elliptic planform following 
a curved path. 

1. Introduction 
I n  terms of computer time it can be very expensive to run a numerical scheme to 

solve the boundary-value problem for the potential due to inviscid attached flow past 
a sharp-edged wing, and purely theoretical studies are always desirable, whether as 
a check on numerical results in simple cases, or for finding general qualitative 
behaviour. 

When the wing is of high aspect ratio a number of approaches are possible. For 
example, a simple strip theory, while possibly accounting for unsteadiness, cannot 
correctly predict three-dimensional effects. Conversely, a quasi-steady theory may 
introduce finiteness of span but will suffer from errors due to  vortex shedding. 

Recently there have been several attempts to apply the method of matched 
asymptotic expansions to extend Prandtl’s lifting-line theory (Van Dyke 1964) to 
unsteady flows. With the exception of that of Ahmadi & Widnall (1985) these 
unsteady lifting-line theories have been inadequate, being either incorrect or based 
upon invalid assumptions. Betteridge & Archer (1974) consider flapping flight with 
harmonically oscillating local circulation, but assume a quasi-steady downwash - 
that for a non-flapping wing with the same circulation distribution. Ahmadi & 
Widnall(l985) have pointed out that the theory of James (1975)’ for a motion of the 
wing with arbitrary forward speed, is incorrect in that his expression for the 
unsteady induced downwash is infinite since it contains a singularity which should 
have been removed. Van Holten (1976) has considered a harmonically time-varying 
motion (relevant to wing flutter or the rotation of a helicopter rotor blade) but 
assumes that the induced downwash is constant across the chord ; this has been 
shown by Ahmadi & Widnall (1985) to be incorrect. The numerical solution of Phlips, 
East & Pratt (1981) for the forward flight of flapping birds also only applies to 
harmonic time-varying motion, and replaces the grid of streamwise and transverse 
vortices with a simpler structure that is suggested by the interaction of the vortices : 
a far wake of discrete vortices and a partly rolled-up near wake. Another biological 
application is examined by Cheng & Murillo (1984) who consider the problem of 
lunate-tail swimming. This is modelled by a lifting line in harmonic oscillation, 
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including the effects of swept planform. The lifting line theory of Dragog (1985) (for 
uniform motion with harmonic time-varying circulation in compressible flow) gives 
a singular integral equation for the local circulation. This equation could be reduced 
to quadratures in the same manner that Prandtl’s steady theory reduces to 
quadratures (Van Dyke 1964). Dragog does not complete his analysis by including 
calculation of downwash or lift. 

Ahmadi & Widnall (1985) have corrected the work of James and Van Holten, and 
have found the induced downwash and lift and moment coefficients. Unfortunately, 
they only consider harmonic time-variation of the local circulation. When the motion 
is in a straight line this is no limitation, since the angle of attack may be split up into 
its Fourier components (for periodic motion) or represented by its Fourier transform 
in time (non-periodic motion). However, this is not possible when the path is curved 
or if the velocity is also varying. The theory of Ahmadi & Widnall is formulated in 
terms of an acceleration potential (essentially the pressure, p )  which, since the 
problem has been linearized, satisfies Laplace’s equation. One advantage of this 
method is that the potential is continuous everywhere except across the wing (and 
the lift is given by integrating the pressure jump). However, there is the disadvantage 
that the solution is not unique since there are eigensolutions with a p p n  = 0 on the 
wing. Uniqueness is then achieved by integrating the potential from infinity to some 
point on the wing. 

In  this paper we shall derive an unsteady lifting-line theory to  allow for the more 
general non-planar motion of a wing of high aspect ratio. Our matched-asymptotic- 
expansions analysis will parallel that of Van Dyke (1964) in his solution for the 
steady lifting line, but is complicated by the shedding of transverse vortices 
associated with variation of circulation with time. By considering the problem in 
terms of the velocity potential the only question of uniqueness can be decided by 
applying the unsteady Kutta condition a t  the trailing edge (Crighton 1985). 
Although the theory to  be presented here is very general as far as the wing motion 
is concerned, ultimately i t  must be extended to include the effects of rolling, yawing 
and of swept planform, as well as the effects of compressibility (the case of an oblique 
lifting line in steady transonic flow has been examined by Cheng & Meng 1980). 

In  $2 the problem is stated mathematically, non-dimensionalized and scaled. Since 
the wing to be considered will be of high aspect ratio, we may make the reasonable 
lifting-line-theory assumption that spanwise variations in flow are small compared 
wish the wing velocity, and this assumption is crucial to our analysis. Limits on the 
accuracy of the solution are imposed by the assumption that the wake is not 
permitted to curl up under the action of local velocities. 

In  $ 3  we find the inner limit for the potential where the problem becomes two- 
dimensional. The outer limit is found in $4, and matching of the two solutions is 
carried out in $5. This matching introduces three-dimensional effects into the inner 
problem which cannot be predicted by strip theory. I n  $5 we present our main result, 
which gives the effect of spanwise variation in circulation on the downwash when the 
wing moves in a general manner. Comparison with the work of Ahmadi & Widnall 
(1985) is made when the wing has constant forward speed but harmonically varying 
angle of attack. Two further examples are given : the impulsive start of a wing from 
rest, and the motion of a wing along a curved path. I n  $6 we consider in more detail 
the effects of wing thickness on the induced downwash. In  $ 7  Kutta condition is 
satisfied a t  the trailing edge and an expression for the lift on the wing is found. 
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FIGURE 1. Definition sketch. 

2. Statement of the problem 
We shall first consider a wing of arbitrary cross-section and planform, with 

span 21 and maximum chord c, moving through a fluid a t  rest a t  infinity. The flow 
will everywhere be attached to the wing. The aspect ratio will be large, so that 
A = l / c  % 1.  Axes x, y, z moving with the wing are defined in figure 1,  and the 
wing is permitted to move with three degrees of freedom: horizontal distance x; 
vertical distance y ; angle of attack. 

Non-dimensional coordinates are defined by 2 = x / l ,  t j  = y / l ,  t = z / l  and t = Q t ,  
where Q is a typical frequency of the motion, and we shall assume that velocities are 
O(Z52). Since we have scaled with span, the limiting case as A +  co is a finite-span 
wing with O(A-2) chord and with velocity potential and circulation being O(A-l) and 
O(A-*) respectively. 

The coordinates of the centreline of the wing with respect to axes fixed in space (i.e. 
fixed with respect to the fluid at  infinity) will be taken to be ([(i), c(t)). 

Cheng (1975) has identified five regimes for the frequency of the motion : 

I 

I1 

I11 

IV 

V 

271. u 
c < l 4 - ,  

52 
c 4 1 = o(T)> 2n u 

c = o(T)  27c u 4 1, 

27cu 
c < -  4 1, 52 

- 4 C C 1 ,  2nu 
l2 

where U is a typical wing velocity. In  regime I, of very low frequencies, a quasi- 
steady theory is adequate, unsteady effects being of a smaller order than three- 
dimensional effects. In regimes I1 and IV the problem requires analysis over two 
lengthscales, c and I, whereas in regime I11 three distinct regions of space exist. In 
regime V an averaging of the problem over time is possible. Our analysis will be 
concerned with domain 11. 

For an inviscid, incompressible, irrotational flow we have the existence of a 
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velocity potential q.5 except on the trailing wake where Vq.5 will be discontinuous. 
Non-dimensionalizing, we choose 6 = q.5/Q12. The problem to be solved is 

everywhere in the fluid except on the wake, with Q$+O a t  infinity and also the 
Kutta condition, that Q$ is to be finite, at the trailing edge. On the surface of the 
wing there is to be no normal flow. 

With the assumption of small spanwise variation in flow ccmpared with the wing 
velocity we may take advantage of the large aspect ratio and define inner coordinates 
x’ = A*, y’ = Ay, and an inner potential $’(x’, y’, i). In these coordinates the inner 
potential must satisfy 

and so the first two terms of an expansion of $’ in powers of A-l will be two- 
dimensional, with z as a parameter. 

We shall define the cross-section of the wing in a plane z = constant, by the 
conformal transformations x’+ iy’ = s’ = eiy(f)s, s = f(w) and lwl = 1, where the 
points a t  infinity in the s- and w-planes coincide, that is 

w+a,+-1+-+ a a2 ..., s - a_, w w2 

where a_, is real and positive. The coefficients a, will be functions of the spanwise 
coordinate i. We have thus mapped the unit disk onto the wing cross-section. y(Q is 
the angle of pitch that the wing makes with a frame of reference fixed in space, and 
is therefore related to the angle of attack (which also depends upon the direction of 
motion of the wing). The inner problem will be non-uniform (to some order) a t  the 
wing tips, and so there will be a constraint on the decay of the coefficients a, towards 
the wing tip; this will be discussed later. 

In  order for a circulation to be set up around the wing there must be a sharp 
trailing edge, so that df/dw = 0 at some point of ( w I  = 1 ; we shall choose this point 
to be a t  w = - 1 without loss of generality. 

We have mentioned that the inner limit as A +  00 is that of two-dimensional 
potential flow. The outer problem, a t  distances from the wing of the order of the 
span, then becomes that of a line of singularities (a loaded line) and this is shown 
schematically in figure 2. Our method will follow that of Van Dyke (1964) with 
modifications to allow for shedding of transverse vortices due to the unsteady motion 
of the wing (these vortices are shown in figure 2 as lines parallel to the centreline of 
the wing). 

Before proceeding to derive the inner and outer solutions we shall comment on the 
trailing wake, This wake will be convected with the total flow and therefore it will 
be necessary, in order to make the problem tractable, to assume a position for the 
wake that may not be its true one, and in so doing limit the accuracy to which our 
solution is valid. This is a common assumption; for example, when the wing moves 
along the x-axis the wake is often assumed to lie on y = 0 (e.g. Van Dyke 1964). Since, 
as will be seen shortly, we shall need to find two terms in the inner expansion that 
contain expressions due to the wake, then we must, for consistency, know the 
position of the wake to second order in A-l. However, since lengths have been scaled 
with span and not chord, the circulation about the wing is O(A-V) where 8 is the 
angle of attack, and over an O( 1) timescale (the timescale of interest to us) distortion 
of the wake due to interaction with itself will be over distances of O ( A - 9 ) .  We shall 
therefore only consider motion with angle of attack O(A-l) .  This is not a very 
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FIGURE 2 .  (a )  Full problem. ( b )  Inner two-dimensional limit. (e) Outer limit of a loaded line. 

restrictive assumption, since the following is in any case not valid when the angle of 
attack is within the stall region. With O(A-l)  angle of attack the velocities created 
by the wake are O(A-*) compared with the O(1) velocities due to uniform flow past 
the body. 

We assume the outer limit to have an asymptotic expansion of the form 

q-  A-2c$2+o(A-2), 

since the local circulation is O(Ad2) ,  and the inner limit to have the form 

q5’ N 
+ A-2$’, + A-3& + o ( A - ~ ) ,  

where terms involving InA have not yet been included since their positions will not 
be known until matching occurs. 

3. The inner problem - vortex shedding behind an aerofoil 
Henceforth, overbars will be dropped from scaled variables; the primes will be 

retained to distinguish inner variables. An overbar will now denote complex 
conjugation. 

In the inner variables we have 

with no flow normal to the wing surface. We shall generalize the method of Isaacs 
(1945) (for the unsteady motion of an aerofoil along a straight path) in the following. 
First we consider the two-dimensional potential due to a wake of vortices shed from 
the trailing edge of the wing. 

If the strength of the local circulation around the wing is r(t, z )  then at time 7 bhe 
wing sheds a vortex of strength --F(7, z) 67. At time t this vortex will be at s;(t, T )  in 
the s‘ plane and a t  w,(t, r )  in the w-plane (figure 3). By Milne-Thornson’s (1938) circle 
theorem the complex potential due to the wake of vortices shed from time to (the time 
a t  which motion begins) is the superposition of vortices in the wake and their images 
in the circle, and inay be written as 

(assuming r(t,, z )  = 0) with subscript T denoting a partial derivative with respect to 
r.  This potential satisfies the condition of no normal flow. 
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Including this term, the complete inner velocity potential for attached flow is 
given by the real part of 

+A-3 I ,  w+S +A-3W*(~,  ~ ) + o ( A - ~ ) ,  i- 3 
where . = d/dt and functions of z and t alone have been dropped. Here I ,  = e-iY(i+ i t )  
is a function of t ,  and I,, which is a function of z and t, comes from matching with 
the outer potential $2. Note that the angle of attack is -arg(Il). The O(A-2) and 
O ( k 3 )  local circulations (4 and &, respectively) may be defined uniquely by 
invoking the unsteady Kutta condition of regular flow in the vicinity of the trailing 
edge (Crighton 1985). The term A-2ijN(w) represents the potential due to a rotation 
of the wing. N ( w )  consists of the negative powers of w in the Laurent expansion of 
f(w)flw-') (Milne-Thomson 1938). The term W* is a solution of the two-dimensional 
Poisson equation (with z as a parameter) which comes from expanding (3.1) in an 
asymptotic series in powers of A .  If we denote the inverse of the transformation f by 
F then W * ( F ( s ) , E O )  is to satisfy 

Re (4 W$+ Wlzz} = 0 

and the condition of no normal flow on IwI = 1,  where 

w, = I,s-a-, I,w+' -I,ao, (- L) - 

remembering that a, is a function of z .  The second z-derivative term is due to the 
third term in (3.1). W, is simply the O(A-l)-term in the inner potential with -aoIl  
being one of the functions of z and t that  were dropped above. 

Effects of the three-dimensionality of the problem will appear in the terms I ,  and 
W* , as well as & via the Kutta  condition. These terms will therefore not be correctly 
predicted by strip theory. 

To avoid complications due to  the distortion of the wake under the action of local 
velocities we shall approximate the position of the wake by the path of the trailing 
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edge (and this approximation improves as the wing becomes thin and as the angle of 
attack tends to zero) ; thus 

f(w,(t, 7 ) )  = e-iy(t){eiy(7)f( - 1)  +A(x(~)-x(~))},  

where ~ ( t )  = t(t)+iC(t). The A appears because in inner variables the centre of the 
wing is a t  (A((t),AC(t)). The inner complex potential then becomes 

+A-3  I 3  w+- + A - ~ W * + O ( A - ~ ) .  { -  :} 
As yet this expression is not in terms of powers and logarithms of A and we cannot 
yet match the inner and outer potentials. However, by splitting the integral into two 
parts, from t; to t - v and from t - v to t, where A-l 4 v 4 1, the integral may be 
expanded for large A to give 

Weiy(t) - eW) - 1) - ao)/a-, e-iY(t)/w - (e-iY(t)- f(-1)-ao)/a-1}]d7 - 
( f (  - 

X(t) X ( t )  

{ 3 (3.2) 
i 

2n 
- k 3 - r ,  i n w + k 3  & ~ + 2  + A - ~ w * + o ( A - ~ )  

(details of this expansion may be found in Wilmott 1985) where H is the unit 
Heaviside function and 

h(7, t )  = F [ f (  - 1) + 7 e-iy(t)'k(t)]. 

The argument of F represents an approximation to the position of the wake that is 
sufficiently accurate for our purposes. 

Because of the appearance of a term of O(A-3 InA) we have introduced the 
'switchback' bound-vortex term (Lagerstrom & Casten 1972) (A-3 InA) (i/2n) In w 
in order to satisfy the Kutta condition. 

We shall now comment briefly on the problem for W*. For a wing at O(A-') angle 
of attack 11-11 = O(A-l ) ,  and since f ; s  is independent of z then to first order W* 
satisfies 

(3.3) 
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To a particular solution of this must be added a function of w and a function of w to 
satisfy the tangency condition. When calculating 4 it  is necessary to know W* in 
order to satisfy the Kutta condition. This problem has been encountered by Van 
Dyke (1964) in his work on steady lifting-line theory, for a wing in an infinite fluid, 
since it is not just a feature of unsteady flow. The solution for W* for a general wing 
requires knowledge of the mapping f(w). However, for a wing that is nearly flat, so 
that s - aPl(z) (w+ l / w )  +O(A- l ) ,  then W* = O(~4-l) .  Henceforth, except in $6,  in 
order not to obscure more important details we shall only consider thin wings so that 
we may take W* = 0. For such thin wings we also have N ( w )  = A-lN*(w) where N* 
is O(1). 

We note that when the wing is indeed thin it is possible to express the coefficient 
a_, in terms of the wing thickness. This may be done by considering the mapping that 
takes the slit [ - 1,1] onto the unit circle, and which therefore maps the nearly flat 
wing cross-section onto a nearly circular closed curve (Nehari 1952). This is 
equivalent to Goldstein’s (1952) thin-aerofoil approximation to Theodorsen’s (1932) 
theory. 

We have now found the inner potential to O(A-’), subject to matching with the 
outer potential. Note that the O(A-4)-terms will be affected by wake curl-up, and our 
assumption about the position of the trailing wake is not sufficiently accurate to 
justify finding these terms. 

4. The outer problem - the lifting-line potential 
Writing (3.2) in terms of the outer coordinates we find that # 2  is to match with 

two-dimensional vortices of strength c(t, z ) ,  (&/27~) tan-, y/x being the leading term 
in the expansion of the real part of - i&/27c In (w), and two-dimensional dipoles of 
strength a-1 Re {a, ezi7$ - a_,  21, being the dipole coefficient to leading order when the 
W, term in W is expanded. Both of these distributions lie along the line x = y = 0, 
- 1 d z < 1. The dominant effect is therefore of a line of vortices and dipoles (higher- 
order multipoles have a higher-order effect on the outer flow). When the wing is thin 
the dipole effect is small and appears in a higher-order term in the outer potential. 
In  order to perform the matching with the vortices we follow the approach of Dragog 
(1985) (for uniform motion with harmonic time-variation of the circulation) but 
generalize the method to arbitrary velocities and circulations. 

In  moving outer coordinates the Euler equation and continuity equations 
become 

v . q  = 0,  (4.2) 
where Qlq is the fluid velocity and pQ212p the pressure. These equations are to  hold 
everywhere except (i) on the loaded line that is the outer limit of the wing of high 
aspect ratio as A +  00, and (ii) on the trailing wake across which the conditions 
b] = [qsn] = 0 are to hold, n being the normal to the wake. I n  the outer region, the 
effect of the circulation around the wing on the velocities is O(AP2) and so we may 
linearize (4.1) to give 

(It  - iqx - t(Iu = - VP. 
Matching with a distribution of vorticity along the z-axis may be ensured by 
modifying this equation of motion to  

4t-&x-&u = - v ~ + r , ( t , z ) ~ ( X ) S ( Y ) ( $ ,  -im, (4.3) 
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($, - (, 0) being the vector perpendicular to the direction of motion. That is, a lifting 
line may be modelled by a line force (represented by the delta functions) in the 
momentum equation. This is not surprising since the circulation produces a lift on 
the wing and hence a force on the fluid in the opposite direction. This result can be 
shown to be true by multiplying (4.2) by a test function, @(x, y;z), and integrating 
over a plane z = constant. After substituting the local expression for q,  the velocity 
due to  a two-dimensional vortex, 

(which has been smoothed to be finite everywhere) we may apply Green's theorem, 
and in the limit en + 0 get the result 

where R2 is the two-dimensional cross-section parallel to the (x,y)-plane. A weak 
solution for q satisfies (4.1) and (4.2) where differentiable, and the jump conditions 
@ ]  = [q - n] = 0 across planes of discontinuity. We therefore have that a weak solution 
for q satisfies (4.3) and the continuity equation. This result is discussed further in 
Ockendon & Wilmott (1986). Before solving (4.2) and (4.3) in the general case i t  will 
be helpful to consider the simpler example having ( = 1, ( = 0 and 4 = r(x). Taking 
the Fourier transform of (4.2) and (4.3) in this case yields q = V$ where 

which is the Prandtl lifting-line potential (Van Dyke 1964). 
depends 

upon both t and z ,  then (4.2) and (4.3) may be readily solved by Fourier-transform 
methods to give q = Vq5, where 

In the most general case, when f ;  and 5 are arbitrary functions o f t ,  and 

This solution has a discontinuous gradient a t  points (5(7) - E ( t ) ,  5(r) - g(t) ,  z )  with 
to < 7 < t and - 1 < z < 1, which generate the surface spanned by the loaded line ; the 
line disturbance has propagated along the material lines of the flow. This potential 
is seen to be composed of a distribution of infinitesimal vortex rings of strength 
r ( 7 , 7 ) ,  with axes perpendicular to  the local direction of motion, positioned at 
(5(7)-6(t) ,<(7)-<(t) ,  q), relative to the wing, for to d T < t and - 1  d z < 1. If the 
trailing vorticity (in the flow direction) and the shed vorticity (parallel to the wing 
span) are imagined to form a grid of vortex lines then the vortex rings are the closed 
loops formed by two sides o f  shed and two sides of trailing vorticity; this is an 
alternative interpretation of the wake structure. We therefore see that as far as the 
outer limit is concerned, we have automatically catered for the wake and its 
approximate position. 

5. Unsteady induced downwash 
In  order to find the downwash at the wing due to the trailing wake, we must 

continue with the matching process. Expanding the inner potential (3.2) in outer 
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variables with s1 = z+iy,  we have that the outer limit of the inner potential is, to  
O(A-2) ,  the real part of 

The inner limit of the outer potential, must next be found in order to 
perform the matching. Details are not given here, but the procedure can be compared 
with that of Van Dyke (1964) and a brief outline of the method used in expanding 
(4.4) can be found in our Appendix. Matching then yields an expression for I,. The 
inner potential is now fully known to O(A-,) ,  subject only to the satisfaction of the 
Kutta condition. 

The downwash itself is the velocity component of the flow perpendicular to the 
wing's direction of motion. This component contains a contribution due to finite- 
span, three-dimensional effects (as well as terms present in a genuinely two- 
dimensional problem of flow past an aerofoil) and which may be found solely from 
the inner limit of the outer potential. From this limit (to be found in the Appendix) 
the velocity component of the flow in the direction (@+e)-&(<,-,$ is seen to be 

(a factor has been excluded). For (5.1) to exist we require &!, $, GZ and GZt to be 
continuous. 

It is possible, for sufficiently blunt wing tips, for this downwash to become large 
and ultimately infinite in a neighbourhood of the tips, therefore invalidating our 
assumption of small perturbation to the incident flow. The size of this region will 
depend on the shape of the wing tip, being larger for blunter tips. It is possible to 
remove such non-uniformities by deriving further asymptotic expansions near the 
tip which may then be matched with the inner flow. Nevertheless, for parabolic and 
more slender wing tips the singularity is a t  most logarithmic, which will result in 
convergent values for the total wing loading. Of course, a higher-order theory along 
the present lines, not allowing for the non-uniformity, will lead (at  higher orders in 
A-') to infinite total lift even for parabolic wing tips. Such wing-tip singularities will 
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only exist in the fully attached flow assumed here. In  practice flow separation would 
occur a t  the tips and we assume that this would have a small effect on the overall flow 
and on the downwash and forces in particular. The first two terms in (5.1) depend 
only upon the instantaneous values of the velocity and circulation, whereas the final 
term is dependent upon the whole history of the motion. The limit to+  - 00 may be 
taken in the above, and in the limit of steady flow the only term remaining is 

which is the well-known result of Prandtl's steady lifting-line theory. 
= 1, f: = 0, & = r*(z) Re{eiUt) (5.1) reduces, after some manipulation, 

to those terms in (6.16) of Ahmadi & Widnall(l985) (for the downwash due to a wing 
moving with constant velocity but harmonically varying circulation) that are due to 
three-dimensional effects. 

Applying the Kutta condition that dW/dw is to be zero at the trailing edge, 
w = - 1, yields, to lowest order 

(5.2) 

In the case 

G(t, z )  = -4xa-,A Im{e-iy(t)$(t)), 

where y(t) - arg2(t) is the angle of attack. 
We are now in a position to consider specific examples. 

5.1. Impulsively accelerated wing 

As our first example we shall consider the impulsive acceleration of the wing from 
rest along a straight path. The displacement will be given by 

[ ( t )  = 0. 

For a constant angle of attack the lowest-order local circulation 4 is a function of 
z only. For a wing of elliptic planform with & = - (1 - z2$, the downwash is plotted 
against spanwise direction in figure 4 for several values oft .  This downwash, which 
is given by the single integral term in (5.1), decreases monotonically in time, 
approaching, as t --f co, the constant value given by the steady state. Note that since 
( ( t )  is discontinuous at  t = 0 the expression for V,, is only valid for t % A-l .  After the 
wing has travelled one span length (t = 2 )  the downwash i s  already only 10% away 
from its final value. 

5.2. Motion of the wing on a curved path 

Since the main work of this paper is in finding the downwash at the trailing edge due 
to spanwise variation in circulation without the restriction of constant direction of 
motion, we shall consider the case of constant angle of attack, with displacement 
given by 

(4 1)  ( t  < O), 
( a t ) ,  = (sin t, cost) (0 < t < a ) ,  { ((t-a)cosa+sincr, (t-a)sina$cosa) (a  < t). 

This represents a wing moving with constant velocity coming from infinity on a 
straight path, smoothly turning through an angle a by following the arc of a circle 
and then returning to infinity. Again the lowest-order circulation r, is a function of 
z alone and not of t .  This is because the speed and angle of attack are constant and 
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FIGURE 5.  Mid-span downwash, V,,(t,O), against time for wing on the curved path shown 
in inset. 
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the radius of the turning circle is large compared with the chord. We shall again 
consider a wing with an elliptic planform, with 4 = - (1 - 2);. The mid-span 
downwash, V3=(t, 0) is plotted against time in figure 5 for several values of a. We may 
note several things about V3D. First, the downwash is decreased due to a turning and 
this has the effect of increasing the effective angle of attack. This decrease in 
downwash is due to the vortex wake no longer lying in the plane of flight, that is, the 
component of downwash due to the longitudinal vortices becomes less as the angle 
between the wake plane and the flight plane increases. This is also true of transverse 
vortices, although in the above example these are not present since 4 is independent 
of time. Secondly, the slope of V,, is discontinuous when the wing leaves the arc of 
the circle. Thirdly, the final value of the downwash as t + 00 is the same as the value 
before turning, for a < 7c. When a = x the wing doubles back on itself and remains 
a non-dimensional distance 2 away from its original path, and so the final value for 
V,, is different from the initial value. For a > K the wing will eventually cross its own 
wake rendering our solution invalid. The perturbation to the downwash due to 
turning (which reaches 30 YO for a = x and more for a > K) is due entirely to the wake 
not lying in the plane of flight. A quasi-steady theory, which assumes the wake to 
always lie in the flight plane and does not account for the double-integral terms in 
(5.1), would predict a constant value for the downwash. 

In the following section we shall briefly and qualitatively discuss the effects of wing 
thickness. 

6. The effects of wing thickness - a dipole distribution 
The preceding is valid for a thick wing in all but two respects; the thin-wing 

assumption has been used in (i) ignoring the dipole effect in q52 and avoiding the 
complexities arising from W * ,  and (ii), replacing the vortex wake by the path of the 
trailing edge. 

When the thickness of the wing is of the same order as the chord, the dipole of 
strength a_, Re{a,eziyx-a_,R} appears in the outer potential a t  O(AT2) i.e. in q52. 
Thus q52 is to match with a line distribution of dipoles, and this is the same problem 
as in the classical theory of lateral flow past a slender body (Thwaites 1960). If we 
denote the complex dipole strength a-l(al eziYx - a_, k} by a + ib, then q52 will contain 
a new term given by 

a(s> t ,  x+ b(s> t ,  y ds. 'S 2 -1 {x2 + y2 + (2  - s)'}i 

Note that this does not depend upon the history of the motion. As before we may 
expand this term for small x and y, with the result that the inner potential W must 
match with a term 

where 
* ?la* I, = ;J:, {a*(,, t )  -a*(x, t )  - (8-2)- a2 (2 ,  t )  --f(,-~)~az,* a22 (2 ,  t)}/(s-r),ds 

a-1 

1 a 2  +- y { a * ( z ,  t )  [In (4A2(1 -2")-21) (6.2) 4 a2 

and a* = a + ib. 
11 FLM 186 
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With the following definitions for G(s, z )  and H(s ,  z )  : 

i3G 
W = G '  

and 
1 aH - - _ -  

as I 

we may solve (3.3) to give 

(assuming that y is independent of x ,  that is there is no twist in the wing), where p 
is an analytic function to be determined from the tangency condition and the 
behaviour a t  infinity given by (6.1). 

W* will contain downwash terms and will therefore require a further circulation 
term in order to satisfy the Kutta condition. For a wing of elliptic planform with a* 
proportional to (1 -2) the integral term in (6.2) is identically zero, and the remaining 
term is unbounded a t  the wing tips. However, unlike the non-uniformity encountered 
previously, this non-uniformity leads to logarithmically unbounded total loading on 
the wing, which must be removed by constructing a solution for the potential valid 
near the tips. 

Also, when the wing is thick, a better approximation is needed for the wake 
position, although only near the wing (for distances of the order of the chord). To 
solve the inner problem exactly the wake must be perturbed by the local velocities 
of all orders. However, this is a prohibitively difficult analysis and to a first 
approximation it would be sufficient to consider only the local velocities induced by 
the uniform flow past the thick aerofoil (previously, for the thin wing, such velocities 
were a small perturbation to a uniform flow and so the wake was taken to be the path 
of the trailing edge -this cannot be justified for the thick wing). Since the streaklines 
of flow past a circle are simple to calculate, even in unsteady motion, such an analysis 
as outlined above is possible when the conformal mapping of the cross-section is 
known. An investigation along these lines is necessary and this problem will not be 
discussed further in this paper. 

7. Forces on the wing 

O(A-3) yields 
Returning to the case of the thin wing and applying the Kutta condition to 

(7.1) 

This completes the solution of the thin-wing inner problem to O(A-3) 
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The forces on the wing may be written as the integral, over the surface, of the 
pressure in the direction of the normal, that is 

where = g; +A&;, +A@;, --+Az(~;? + g;? + ~ - 2 g ~ )  

and 4' = Re { W } ,  F, and Fy being in the x- and y-directions respectively. 
If s = a-,(w+ l/w)+O(A-') then 4; and W* can have at most an O(A-4) effect on 

the forces. We can therefore take W to be a two-dimensional potential with z as a 
parameter and apply Milne-Thomson's extension of Blasius' theorem (Milne- 
Thomson 1938) to give the forces on the wing correct to O(A-3). In inner non- 
dimensional variables the expression for the forces becomes 

+p~2Z((- it) v - 27ci~12(g- i t )  

where V is the volume of the wing and K is the local circulation. Upon substituting 
for W and evaluating contributions from poles the expression for the forces 
becomes 

I?, - iFy = pQ21( (- i t )  V + 27cpQ2Z4 a_, at {e+(al I1 -a_, I,)} dy s1, a 
- ipQ2Z4A-3 ct e-iY f(-1) dy il, 
- ipQ2Z4([- i t )  (AP2G + A-3 In A &a + AP3G} dy + o( A-3), L 

where c, Ga and & are given by (5.2), (7.1) and (7.2) respectively. 
We note that, as in the steady case, three-dimensional effects will first appear in 

the drag term at O ( P )  i.e. O(A-'). This term has not been calculated in this paper, 
and would necessitate finding the O(A-4)-term in the inner expansion. As has already 
been mentioned, this term will include effects due to the self-interaction of the wake, 
and is beyond the scope of this paper. Even if wake distortion is ignored, the problem 
of calculating the O(A-4)-inner term becomes prohibitively complicated when the 
motion is unsteady. Unfortunately, this inability to easily find the leading-order drag 
limits the practical application of the results (for example the two cases examined in 
$5) since the power needed for acceleration cannot be found without difficulty. 
Nevertheless, a qualitative interpretation can be placed on the results and as a rough 
estimation it may be possible to say that an increase (decrease) in downwash would 
produce an increase (decrease) in drag as in the steady case. However, this possibility 
needs further investigation. For example, when the wing moves through the arc of 
a circle (95) the downwash is seen to decrease. This does not necessarily mean that 
the wing needs less power to turn. 

11-2 
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8. Concluding remarks 
In this paper we have considered the problem of a wing of high aspect ratio moving 

with three degrees of freedom. The method of matched asymptotic expansions has 
been used to find the inner and outer velocity potentials. Matching of these two 
potentials yields an expression for the downwash due to spanwise variation in local 
circulation. Two computed examples have been given. First, the spanwise variation 
in downwash is shown for an impulsively started wing. Secondly, the variation of 
mid-span downwash with time is given when the wing moves along a path that is 
curved in space. 

This work extends that of Ahmadi & Widnall (1985) to include an extra degree of 
freedom in the path of the wing and allows an arbitrary time-variation. 

We have given a qualitative description of the effects of wing thickness on the flow, 
downwash and lift. The effect on the latter is to include an instantaneous, as opposed 
to history-dependent, term. 

Finally, expressions for the forces on the wing are given but it is noted that the 
drag force due to spanwise variations is affected by the self-interaction of the wake. 
It may nevertheless be possible to qualitatively describe the drag. 

Further work is needed to include swept planform, flexibility of chord and span, 
ground effect (for an aircraft during take-off and landing) and further degrees of 
freedom in the wing motion. 

The author would like to thank Dr J. R. Ockendon for many helpful discussions. 
This work was supported by an SERC Research Studentship grant. 

Appendix 

integrate (4.4) by parts to give 
We shall consider the limit of (4.4) with x = A-lx’, y = A-ly’ as A + CO. First, 

where dl = (A- ld-&)  + & ) ) 2 +  (A-1y’- 5(7) + 5 ( t ) ) 2  

and A ,  = A ,  + ( T / - 2 ) 2 .  

To this we may add and subtract a term 

where A; = (A-’x’+l(t)(t-7))2+ (A- ly ’+<(t ) ( t -7) )2 

and A2 = A1+(T/-2)2, 

to give a non-singular integral which may be expanded for large A plus an integral 
which may be evaluated exactly. Hence we have 
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where 

and 

The final term may be integrated with respect to u exactly (Gradshteyn & Ryzhik 
1980, p. 89). 
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